
PMM U.S.S.R.,Vol.45,pp.114-121 
Copyright Pergamon Press Ltd.1982.Printed in U.K. 

0021-8928/82/l 0114 $7.50/O 

UDC 539.3 

SOME REPRESENTATIONS OF THE SOLUTIONS OF BOUNDARY VALUE PROBLEMS 
OF TWO-DIMENSIONAL STATIC THE~OE~STIC~TY* 

V. A. SHACHNEV 

Exact solutions are obtained for special boundary value problems of linear thermo- 
elasticity of a homogeneous anisotropic cylindrical body in the case when force and 
displacement in definite directions are given on the cross-sectional contour. These 
directions can vary consistently along the contour. The exact solutions of the 
special problems are used as the representations of solutions of other boundary 
value problems and to reduce a boundary value problem to the solution of a certain 
one-dimensional singular integral equation. The integral equation for an ortho- 
tropic strip is obtained as an illustration. 

1. Let us consider a homogeneous anisotropic body in the shape of a cylinder of arbitr- 
ary cross-section on which force and temperature loads act without altering the cylindrical 
surface in the generatrix direction. We introduce a rectangular coordinate system such that 
two axes would be in the plane of the cross-section while the third would be directed along 
the cylinder generatrix. Then, the given forces pi (i = 1,2,3) distributed along the bound- 
ary surface, and the relative temperature 6 will be functions of just the first two coord- 
inates, i.e.,pi =~~(x~,xJandI) = 6(x2,,zz).It is assumed that the forces pi satisfy the equili- 
brium conditions on the boundary surface. 

We assume the stresses corresponding to the loads pij(i,j = 1, 2,s) to be two-dimensional 
also. They then satisfy equilibrium equations of the form 

j$lajPij=O, Pji=Pij (1.1) 

Here 3, is the partial differentiation operator with respect to x8 (mass forces are not 
taken into account, they can be taken into account by using singular solutions for an unbound- 
ed medium). 

We write the governing relations for a body with rectilinear anisotropy in a form permit- 
ted with respect to the strains 

Here the coefficients aijkl satisfy the symmetry relationships &;ju = aijkl, a/&i = OCij&l, af 
are the coefficients of linear expansion. 

Let us note that a symmetry of the form ukii~ = alnl is not assumed here since existing 
experimental values of the coefficients often do not satisfy this condition. 

Since pss is not in (1.11, we also eliminate it from the relationship (1.2). We will 

consequently have the following governing relationships 

%jkZ "=aijkf - ~ijo%rrt~ aj j = 8, jai - aijoas , Ui j0 = aijdu,m3s (1.4) 

It follows from (1.4) that allsa = a5el = u8* = 0, and from (1.3) that the eij depend also 

on only x1,x*, then the general strain compatibility conditions /l/ reduce to relationships 
of the form 

a%%, -+ @l%, = 2d&e,,, a*e, - a,%, = c, %5 = ce + clzl + c,q, c, ci = con& (i = 0, 1, 2) (1.51 

Let us extract stress and temperature elements from their fields, namely of the form 

pa* = pneQ = pie* = 0, p& = cio + cilxl -f- cilia:,, i i k&3, 6* = 160 + 131x1+ aa%% 

For cm = -cll the first of the fields satisfies the equilibrium equations (1.1) ident- 
ically. The displacements ut* corresponding to these fields, that are found by integrating 

*Prikl.Matern.Mekhan.,45,~0.1,154-164,198l 
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the relationship &b~e-i-9,U,*=2d~~ l , will be polynomials of not more than the second order. We 
select the coefficients in the elementary field representations so as to satisfytherelations 

(1.5). Then for the remaining stress field prjo =pI,-pIl* and temperature field 60 =6-fI* 

the relations (1.5) will be homogeneous, i-e, we should set c =3 ct = 0 therein. Therefore, 
we shall consider the fields pt~ considered below to be defined only to the accuracy of the 
elementary fields. Let us represent them by using the stress functions Fand & 

Pll = i?,T, p” = cY,V, pls = -i?,i3,F, pp = &G, psr = 4,G (1.6) 

We obtain the following system of equations for the stress functions from (1.5) and (1.6), 
where ha -0 and -0; C= 

L,F + 2L,,G = -M#, L’, F + 2L,‘G = -M&J (1.7) 

Lll=aIt&‘-2 ((11llt falrll)ar8~l+ (aus f 4111+4011U)4%9,'- 2 (h'l' + ~l"')MY + atrrral' 

L.3 ' =-'d" -((aam + haal)&%+- hssdl' 

L I’ = aid” - (all’8 f- 2a”‘l) &*& -I- (a~ t 2a”‘d &h’ - a”‘dt 
L1=-erlll&' -((a"11 -I- 2a'~l'~&'4 + h" + ~SU) &~l'-~dha 

M = ad” - 2als&4 + a**&*, M’ = a*& - a& 

We note that LIl= Lx’ if akUJ = aiJk2. 

We assume the temperature 6 satisfies a heat conduction equation of the form 

toe = 0, Lo = k&” + 2kdd’ + kd,a (1.8) 

where the operator Lo is strictly elliptic. This latter means that the characteristic poly- 
ncmial lo = ks’y* + 2k,‘y + ks’ has just caplex roots y. = a0 + ieo and f*. Representation of 
the operator Lo = k’,(a’ - yo&) (8’ - foal) corresponds to expanding l,(y) into factors. The 
kernel of each cofactor is analytic in the domain of a section of the function T,(%)r T,(fo), 
z,,-q +y&, and according to the Boggio theorem /l/, the general (classical) solution of 

= T,(e,)-!- T*@,). Taking into account that 6 is real, we obtain that 
finally write the general solution in the form 6 = 2ReT(a,), where 

of a complex variable in the cross-sectional domain. Weassume 
that T(a’) is also a certain particular solution of (1.8) that satisfies the given boundary 
condition. 

According to the representation obtained for 6 the system of equations (1.7) will have 
the form 

LllF +24*G = -2Re Mv*) T"(z*)), ml = a,,~* - 2a,*y +a*' (1.9) 

L’,F + 2L”G= -2Re (m’ ho) T” (z,)), m’ = asly - a” 

Here ml are characteristic polynomials of the operator Mt. 
Assuming the temperature field not to be reduced to an elementary field and hence T”(z,)# 

0, the particular solution of the system (1.9) is determined in the form 

F= -2Re(kl(yo) Ho (I~)), G = - Re (k* (14 R. (zo)), Ho' (zo) = T (20) 

kl = hh - %Wl, k, = Wl - n&Yl, 1 = 1111” - ll& 

Here 111 are characteristic polynomials of the operators L,J. 
The general solution of the homogeneous system of equations corresponding to the system 

(1.9) is represented in the form F = L”H,G= --‘l’L’lH, where the case when L” and &, can 
have a common nontrivial factor is eliminated here. Then a satisfies the equation 

LH = 0, L = LllLS’ - L,‘L’, 

The characteristic equation l(y)= 0 has three complex roots 7,, = a,, f ih, a = 1, 2,3, and 
three conjugates (see /3/). We assume that all the roots are distinct. The case of equal 
roots is considered degenerate in the final solution of the problem. Expanding the polynomial 
l(y) into factors and representing the operator L analogously to the heat conduction operator 

Lo. we obtain the general solution in the form 

Here H,,(z,,) are analytic functions in the domain of definition of their arguments. Thegeneral 
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solution of the system (1.9) has the form 

F=2Rej%I,,(y,)E,(z,)-kl(yo)Ho(zo)), G=--Re(~~~l,(~,)E,(z~)iX,(y,)H,(~~)j (1.10) 

Here E,, = H,,“(z.,,) are analytic functions. 
To determine E,, we obtain relationships on the boundary that correspond to the funda- 

mental problems of elasticity theory. From the relationships for the stress functions on the 
section contour /3/ 

&F = P,, -4,F = P,, G = P,, Pi= & lptds, i = 1, 2, 3 

where P, are defined to the accuracy of nonessential constants selected so that Pi at a 
given point of the contour would take on the necessary values (the plus sign is taken for the 
outer contour of the section, and ds is the differential of an arc of the contour), the fol- 
lowing conditions on the contour result for the functions (p, = E,,'(j = 1,.2) 

2Re il yEjZz2 (y,,) On (z,) = (- I)+1 Tj, Re jl hl (A) ‘%&I) = - T3 (1.11) 

Tj = PI - 2Re ((-y,,)“-’ k, (14 Ho’ h)), TS = J’S + Re V&h) HO’(~) 

For T, = 0 the condition of equivalence of the temperature and force loads on the boundary 
follows from (1.12). 

We now find the boundary conditions for the function @*(z,J, that result from the bound- 
ary conditions for the displacements. By determining the stresses according to (1.6) and 
(l.lO), we obtain 

pij = 2Re (~~l(--lh)"-jz22(~.)rD'(~) - (- ro)4-i+kl(~o) T (20)) 

pi3 = Re(n$l (- Y,,)~-~ 121 (y,,) @,,’ (2,) t- (- YO)*-” ks (~0) T (Zd) 

(1.13) 

Integrating the equations CJiu, + a+, = 2ei,, having hence determined the strain from the 
relation (1.4) with (1.13) taken into account, we obtain for the displacements 

ui = 2Re ( n$l y$zii* (yn) @,, (z,) - yi%o (YO) Ho’ (~0)) (1.14) 

US = 4Re (*il hl* (Y,) @, (z,) - dlo (yd Ho’ (~0)) 

eij*=(a~jllVa-2uij12y i- %j22) z22(V)-_(~ij21~-U~j2*)z21(Y) 

GO= %j- (atjllY2 - bjl2Y -t aij22)kl(Y)-(Utj21y- aij22)k2 (v) 

Boundary conditions for mn(&+) result from (1.14). 

2. To restore the analytic functions by means of their boundary values related by means 
of (1.11) and (1.14), we examine some special problems. The degree of definiteness of such 
problems is related to the nature of the material anisotropy. We consider only orthotropic 

material here, for which 
al#kl = 0, k # 1; aljLk = 0, i # j; atlkl = 0, kZ # ij 

in the governing relationships (1.3). 
In this case L,, = L21 = 0, and the system (1.7) decomposes into two independent equa- 

tions L,,F = -Mr+ and L,,G = 0, which corresponds to separating the problem into bendingwith 
tension and torsion with longitudinal shear in the direction of the cylinder generatrix. This 

latter problem is not related to the temperature field. Let us examine just the first problem 

since the solution of the second is trivial. 
The heat conduction operator has the form L, = k2,apg + k&‘, and therefore, 

The characteristic equation corresponding to the operator Lll is found in the form 

Ill(r) =alrll~~ + (sllaz + a2211 3- 4ala12)V + a2222 = 0 
(2.1) 

and has two complex conjugate roots. Setting Zls = I,, = 0 in (1.101, we obtain the following 
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representation for the stress function 

P=2Re~~p,o - ml (ya) r& (ye) PO (20)) 9 2% PO’ (So) = * (2.2) 

Here Fm(&) are analytic functions of their arguments, r, -22 +y&. 
The boundary conditions for,,the functions i&, = Fn' will have the following forminterms 

of the force loads and temperature 

2Re ii1 Y!,-‘Us, (s,,) = (- iY-1 T,, f-i,2 

Tj = Pj - 2% H-w-’ m, (701 hl-’ ho) Fe’ ho)) 

(2.3) 

and in terms of the displacements and temperature 

Let us consider the following boundary value problem. Let Te and &ebe theboundary 
"force" aa "displacamentW in the directions of the angles 0 tina 8* to the xl axis, res- 
pectively. According to (2.3) and (2.41, we have on the boundary 

We introduce the auxiliary functions Ym = &+&(r& We represent the boundaryconditions 
(2.5) in the form 

(2.61 

Defining the angles 6 and 0*,so that the coefficients x, become real, i.e., 

Im x, (e, e*) = 0, )Z = 1, 2 (2.7) 

Let us investigate the nontrivial solutions of these equations. 
Depending on the sign of the determinant d= (anu + ~nr~+ %&'-4%&m the character- 

istic equation (2.1) has roots of two kinds: if d> 0, then y,,=i&, if a<O, then y,,=T 
a+% n=l,2, and two conjugate roots (the case of equal roots is excluded). 

For roots of the form +p,, = i&,, condition (2.7) is possibleintwo cases: 0 = 0,6* = n/2, 
or 8 = nl2, e+ =O. In the first case, the force Ta and the displacement U, are given on 
the body boundary, while in the second case the displacement & and the force T, are given. 

For roots of the form yS = rF a + ig , according to (2.7) the following formulas to define 
the angles are valid 

tg e = f 8 (anrrtallllp, tg @+ - T e (aldat&~ 

8 = Wamh~ - a~ldo/~~~a~~l~ - adY’* 

For the values of 8 and 8' obtained, the roots are r,#f in both cases, hence, the 
system (2.6) is solvable in a unique manner for ReY,,. Solving we obtain 

(2.8) 

The boundary value prcblem is therefore reduced to the restoration of the analytic func- 
tions in their d-ins of definition by means of their real parts on the boundary.Letr ==f(Q 
be thenappingof scme standarddoxainin the plane of the complex varfable 6-E+iq in a 
given danain of the canplex variable I =s+ fy (z =+, y =r& Any domain for which the 
schwartsoparatorthatxestores afunctionanalytic inadomainbymeansofits realpartonthabound- 
ary is constructed effectively can be selected as standard. For definiteness, we assume that 
the cross-sectional domain is simply-connected and bounded by a piecewise-smooth curve, and 
the half-plane q>o is selected as standard domain. 
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The mappings 

z,,=A,z, A,= n=1,2 

(where a+,, + ih = yn are the roots of the characteristic equation) carry the domain of the 
bar cross-section over into the corresponding domains of the planes of the complex variables 
z, = Xm + iy, = 2 + ?I'ny, n = 1,2. The mappings z,, = A,f(<) are not conformal, hence, we con- 

sider the mappings z, =j=(&J, 5, = g*+ inn, n = 1, 2 simultaneously, which map the upper half- 
planes qn >O conformally into images of the transverse section for the mappings z, = A,z. 
We then have the relationships f,,(t) = A,f(E;), n = 1,2 that 

Let us assume that Tt, and Ue. are given as functions 
following real functions 

According to (2.8) r we obtain 

ZReYm = (-l)“t\rzn (L), n = 1, 

Here To and ue. are given such that the functions $,have 

connect the variables {,, and 5. 
of z, and let us introduce the 

n-l,2 (2.9) 

2 

a definite finite limit as 5,~ --t 
co(~+O), and satisfy the Hdlder condition on the whole axis. Applying the Schwartz operator 

for a half-plane, we obtain the following representations for the required functions: 

The constant c is not essential for later, and will be omitted. If h(m)fO, then fpn{m) 
under the integral should be replaced by $n((z,,) -$.,(oo). 

The representations obtained for 'P,, yield the exact solution of the boundary value prob- 
lems in the case when the force Te and displacement Us* are given on the boundary of the 
section of a cylindrical body. In order to determine the connection between the obtained re- 
presentations and the other boundary value problems, we assign the force and displacement in 
the direction of the angles o and @*to the Xaxis. Then by using (2.5) in which 8 should 
be replaced by o, and having set @, = &-lY,,, where the relationship 

is satisfied on the boundary according to the Sokhotskii-Plemelj formulas, we obtain 

(2.10) 

% = tn (~)/t~ (f9, xn = (3 (o*)rt, (fl) 

The representations (10) result directly in integral equations for the solution of different 
boundary value problems. As an illustration, we consider the first boundary value problem of 

elasticity theory, when the forces TX and T, , or equivalently, Te and T, are given on the 

boundary. 
For roots of the characteristic equation of the form yn== is,, we have Ree, = Rea, = Rec. 

If the governing relations are symmetric, i.e., akljj =Uij~, this is valid also for roots Of 

the form +y% = +s + is. We shall henceforth consider these cases only. From (2.9) and (2.10) 

we obtain an integral equation in U* (f)= Ue* (f(e)) of the form 

2 (- l)nImo, m W(rc(tn)) z R 
_ =~ _ E;, (o;) dr, = T* (E), s F, (%) = t1 @nf 6% 

%X=1 

(2.11) 

T* (E) = (x,- x1) (To*(E) - Re u TO* (%)) - 2 (- i)“‘T1man 
- To* (7 b,)) 

X 5 zn - E, (El &I* Te*, o 6) = Te, co lf (EN 
n=* -.m 

The equation obtained is a singular integral equation with shift, where questions on the exist- 

ence of its solution are examined in /4,5/. Here the existence of a unique solution under 
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appropriate assumptions will result from the following. We set Q)==@* and (d*=e in (2.10) 
and we select two distinct pairs of values of 0 and 8*. Let us consider the case of the 

roots v_ =5 t&. Setting e =I 0, tP P II: 12, we have from (2.9) and (2.10) 

Setting e=n f 2 and 0" = 0, we obtain 

(2.12) 

12.13) 

There follows from the representation of (2.12) and (2.13) in operator form 

u1* 
Tl* 

=K 
u1+ 

=N f-g I I 
that the operators K and N are reqiprocal. The existence of a unique solution of the approp- 
riate integral equations in the class of Htjlder-continuous functions results from the exist- 
ence of the inverse operator. Meanwhile, the operators K and N are integtal transfonnswitb 
an inverse for any pair of Htjlder-continuous functions on the whole number axis. 

Let us now examine the case of squal roots for the characteristic equation, which we 
obtain by passing to the limit as @,-+ Br in the relationships (2.12) and (2.13). We assume 
the function &,-r;l(A,d,-lfl(g~)), which maps the number axis into itself one-to-one, is smcoth 
enough. Let v'n = tpn. Let us consider just the second relationship in (2.121, which wewrite 
in the form of an equation in U,*: 

?sssuming 

and passing to the limit under the integral sign as e+O, we obtain an integral equation for 
the case of equal roots in the form 

For an isotropic material sxs=(l --v3! E,+,,= -v(1 +v)/E', %==:((i -v), v isthePoisson*s 
ratio, E is the elastic modulus, 
such that #= 

the characteristic equation (2.1) has equal roots ?cn- i 
1, and rl=%,EI= $ should be put into (2.15). 

Example. If k(&,,~~)=l in (2.14), and k”(&L,~l)=O in (2.151, then these equationsare 
solved exactly by applying the Cauchy inversion operator. The dependence8 &r-ah+& 9'&)= 
a& + B, e, b = oomt correspond, respectively, to these cases , where a particular case of the 
former is used in 131 to solve the anisotropic problem of deformation of a domain outside a 
parabola. The transformations %=A,,s transfer a parabolaintotheparabolas,andthe domains 
outside the parabolas are images of the half-plane under the mappings m=Bn"(tZ+%&l)-4'. 
where 4 is the parabola parameter. The relation between h and 6 on the half-plane bound- 
ary yields &b= $&,, which corresponds to the case under consideration. Let us present the 
solution for an isotropic medium 
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-.u 

Equations (2.14) and (2.15) axe obtained under the assumption of sufficient smoothness 
of the functions therein. Let us now extend these equations to the case of a more general 
form of the function Er= rp(&). We convert the integral equation (2.14) to a form where 
smoothness conditions are not formally present for the function mentioned. To do this we 
first obtain a formula to rearrange the singular integrals with special kernels. 

For a real Halder-continuous function u(E) on the whole number axis, and for a function 
~(6) mapping the number axis into itself one-to-one, where its derivative is not zero and is 

Hblder-continuous, we have 

The function v is here H&.der-continuous. Applying the Bertrand-Poincare commutation to the 
last integral, we obtain 

(2.16) 

Here the inner integral on the right is understood in the principal value sense with respect 
to the, point E and p-'(Z). 

Now applying the operator s to (2.11) so that 

taking into account that I!%== -u, and assuming the conditions of (2.16) to be satisfied, we 
obtain the following integral equation 

(2.17) 

As an application of (2.171, we obtain the integral equation for bending of a strip. The 

mappings OR=&; transfer a strip of width h parallel to the t-axis into similarly located 

strips of width && for any roots of the characteristic equation. For definiteness, we con- 

sider the case y,,= T a+ ip, which holds for many kinds of wood /6/, for birch, say. The upper 
half-planes are mapped into strips by the functions z,,= n-~&,hln c,, so that we have on the 
boundary 

& >, O,k = g,; LG 09 k = CL c = erp@dp) 

3. We now construct a more general representation for an orthotropic material in the case 
when the boundary conditions can change along the boundary, namely, we assume that 8 and its 

conjugate angle 0* are a function of the boundary points. To do this we assume that the 
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relationship (2.7) is satisfied just for some one n. In the case of the roots yn- *. n= 
i,2 there hence follows a dependence between the angles of the form 

For &finiteness, we select n=2. In place of (2.6), we then obtain 

(3.1) 

Eliminating Y, we obtain 2Re((x, -%,)YJ=xJ'e - Up. Assuming that n, --x, depenas on 
points of the boundary such that (XI- x,)Y1 is the boundary value of an analytic function, 
we analogously find 

(3.2) 

Kere the function A is determined from (2.91, but is already not real. Determining R0Yl 
on the boundary from (3.2) by using the Sokhotskii-Plemelj formula, we obtain from the first 
relationship in (3.1) 

1. 

2. 

3. 

4. 

5. 

6. 

REFERENCES 

NOWACKI W., Theory of Elasticity. WIR, Wosccnv, p.872, 1975. 

VEKUA I.N., Generalized Analytic Functions. English Translation, Pergemon Press, Rook No. 
09693, 1962. 

LEKHNITSKII S.G., Theory of Elasticity of an Anisotropic Body, NAUKA, Moscow, 1977. 

GAKKCFJ F.D., Boundary Value Problems. English translation, Pergamon Press, Book No. 10067, 
1966. 

LITvIN~WK G.s., Boundary 
Moscow, p.448, 1977. 

UGOLEV B.N., Testing wooa 

Value Problems and Singular Integral Equations with Shift. NAUKA, 

and Wood Materials. Lesnaia Promyshlennost', Moscow, p.250,1965. 

Translated by M.D.F. 


